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Fundamental  limitations on the energy dissipated during one elementary logical 
operation are discussed. A model of a real physical device (parametric quantron) 
based on the Josephson effect in superconductors is used throughout the discus- 
sion. This device is shown to be physically reversible, and moreover it can serve 
as the elementary cell of a logically reversible computer,  both these properties 
being necessary to achieve the fundamental  limits of energy dissipation. These 
limits due to classical and quantum statistics are shown to lie well below the 
earlier estimates, k oT and h / r ,  respectively. 

1. INTRODUCTION 

Minimum energy dissipation is one of the basic problems of physics of 
computation. During the last two decades, this problem has been a subject 
of extensive discussion; quite adequate reviews of the discussion have been 
given by Keyes (1975) and Landauer (1976). The understanding achieved 
during the discussion is not quite complete for nowadays, when new 
nonlinear elements--superconducting Josephson junctions [see, for exam- 
ple, monographs by Kulik and Yanson (1972), Solimar (1972), and Likharev 
and Ulrich (1978)]--have become available for a computer design. 

In fact, these junctions are potentially ideal computer elements in many 
aspects, including energy consumption. A Josephson junction is essentially a 
nonlinear energy-storage (reactive) element. Nonlinearity of such an element 
can be characterized by nonquadratic dependence of its potential energy U 
on some physical variable x, describing the state of the element. If U(x) 
has at least two minima, the element can be used for storage of infor- 
mation without permanent energy dissipation. Moreover, if the shape of the 
"potential well" U(x) is flexible enough, the element can be used for the 
information processing (Landauer, 1961). It is believed that such nonlinear 
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energy-storage elements (rather than permanently energy-consuming ele- 
ments like transistors) can enable one to achieve the fundamental limits of 
energy dissipation. 

In this paper, an analysis of the energy consumption by nonlinear 
energy-storage elements is given. In Section 2, we will demonstrate that a 
sufficiently flexible potential well can be realized by the parametric quantron 
(PQ), a very simple device using Josephson junctions. Changing the shape of 
U(x) by external "forces" in a proper way, this device can be switched from 
one stable state to another in a reversible way, i.e., without any rapid 
"jumps" of the variable x. This physical reversibility provides gradual 
decrease of energy dissipation when the process period r is increased. 

In Section 3, we will show that a logically reversible computation 
proposed by Bennett (1973) can be performed using PQs interconnected 
and biased properly, thus excluding the "'entropy loss" W c = kBT ln2 of 
energy (per an elementary logic operation). The results of Sections 2 and 3 
show PQ to be an ideal computer element in its aspect of low energy 
dissipation W at given parameters like temperature T, eigenfrequency co, 
relaxation time "L operation period "r, and permissible error probability p. 
This allows one to analyze the fundamental limitations of W using the PQ 
model of a logical cell. 

Classical limitations due to finite thermal fluctuation energy kRT are 
analysed in Section 4. The lower bound of W is found to be proportional to 
T, r-~, and Q-~, where Q is the element's quality factor. 

For superconductor devices like PQ, with their high eigenfrequencies ~o, 
and realizability at low temperatures, one can really come to the situation 
when kBT becomes lower than hco. In Section 5, we will demonstrate that 
the quantum-mechanical effects, particularly the macroscopic quantum tun- 
neling, provide the bound for energy consumption in this situation. The 
bound, however, is found to be much lower than the earlier estimate 
W ~ h / r  by Bledsoe ( 1961), Marko (1965), and Likharev (1977). 

In the conclusion, the results for the minimum energy dissipation in 
energy-storage computer elements are summarized and discussed. 

2. PARAMETRIC QUANTRON AS PHYSICALLY 
REVERSIBLE DEVICE 

Consider a superconducting ring of inductance L enclosed by a Joseph- 
son junction (Figure la). This device ("single-junction superconducting 
interferometer," or "ac SQUID," or "simple quantron") is well known 
owing to its wide applications in superconducting quantum magnetometers. 
To describe the features of the device, we will write down its potential 
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Fig. I. Parametric quantron (a) and its potential energy U as a function of coordinate x 
(normalized magnetic flux ~)  at various values of parameters ?,=(2~/~Po)IML and f =  
(2~-/~o)q~ , , -~r  (b)-(d). Cross denotes a Josephson junction with the critical current I•t 
controlled by current I,. 

energy U, which is a sum of the magnetic energy of the ring 

UM= LI2/2 (1) 

and the coupling energy of the Josephson junction 

Uj = - ( ~ 0 / 2  ~ )IMcos q~ (2) 

Here I M is the junction critical current, ~0 = h/2e~2• 10 -15 Wb is the 
magnetic flux quantum, and qv is the superconducting order-parameter 
phase difference, related directly to the net magnetic flux ~P in the ring, 

~ = (~P0/2~)qv (3) 
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Taking into account the contribution of the external magnetic field flux 
q5 e to the net flux q5 

(I) = (~e - -  L I (4) 

we obtain the following expression for the system's potential energy U = U M 
+U,:  

U = (  rbo/2~r )2 L - ' [  ( x -  f ) 2 / 2 +  Xcosx] 

x = q 0 - ~ r ,  f = % - ~ ' ,  % = ( 2 ~ ' / ~ 0 ) ~  ,. (5) 

where h is a basic dimensionless parameter of the device: 

h = (2~'/~b o )LI M (6) 

Figures l b - l d  show the U(x) dependence (5) for a number of values of h 
and f. One can see that if the critical current I M is large enough (X > 1), x 
can have several stable states. Thus, the quantron can be used for the energy 
storage without any permanent power dissipation (Likharev, 1975). The 
information is encoded by the value of variable x, i.e., by the value of 
magnetic flux �9 trapped inside the interferometer ring. At, say, f = 0 and 
h = 3 (Figure lb) the equilibrium (static) value x = + x 0 ~2.3 can denote 
binary unity, while state x = - x o denotes binary zero. 

Figures l b -  lc show that the effect of parameters h and f on the shape 
of the potential well is rather different. The parameter X changes the height 
of the energy barrier at x ~ 0 (for the sake of simplicity, we will limit 
ourselves to the case of not very large values of ?t, in order that energy 
barriers at x~2~rn do not appear)- -Figure  lb. On the other hand, the 
parameter f governs the value of the well asymmetry. If X << 1, f merely shifts 
the single minimum along the x axis--Figure lb. If h >> 1, f retains both 
minima of the energy at almost the same position on the x axis, but 
produces a difference AU.~2fx o between them, so that the upper local 
minimum finally disappears--  Figure 1 d. 

It is clear now that with the control of not only f (external flux), but 
also X, we would obtain a very flexible potential well. This is the basic idea 
of the parametric quantron, PQ (Likharev, 1977), where a simple Josephson 
junction is replaced by a junction with critical current controlled by current 
I c. Such a controllable Josephson junction can be realized using either a 
distributed structure or a set of parallel-connected lumped junctions (see, 
for example, Solimar, 1972). In the simplest case of two similar lumped 
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junctions, connected in parallel by low-inductance superconducting leads, 

I M = 2Iocos[(2~r / qbo)MIc] (7) 

where I 0 is the critical current of a single junction, and M is the mutual 
inductance of the control current line carrying I c and the loop formed by 
two junctions. 

Flexibility of the energy well of the PQ makes it possible to switch it 
from one stable state into another without any rapid irreversible "jumps" of 
the variable x. To accomplish this, we start from the symmetric well realized 
in the absence of bias: f = 0 (Figure 2a), and apply a small bias correspond- 
ing in sign to the state of the system (Figure 2b). Now we can suppress the 
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Fig. 2. Deformation of U(x) dependence during the process of reversible switching PQ from 
one stable state to another one--left  column. Right column demonstrates the rapid jump of 
coordinate x in the case of improper polarity of the preliminary biasing f. 
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energy barrier by decreasing ~. (Figure 2c), change smoothly f to the same 
value of the opposite sign (Figure 2d), and restore the energy barrier by 
increasing ~. (Figure 2e). Removing the bias, we come back to the initial 
shape of the potential well, but with the opposite state of the device (Figure 
2f). 

Note that if the bias f before the energy barrier suppression is chosen in 
a wrong way, i.e., of polarity opposite to that of the PQ state, the removal of 
barrier results in a rapid jump of the variable x when the upper local 
minimum of U(x) disappears (Figure 2, right column). This jump is 
accompanied by some irreversible energy loss, which cannot be avoided 
even at vanishing bias. Simple arguments based on the relation between 
entropy and information (von Neumann, 1966; Brillouin, 1956) lead to the 
"entropy" bound of this energy dissipation 

W~> W = kBTln2 (8) 

per each energy barrier removal without the proper preliminary bias. 
So, the basic feature of PQ is its physical reversibility, which permits 

one to switch the device from one stable state to another without any 
uncontrollable rapid processes and so avoids the limit (8), if the parameters 
(~. and f )  are changed in a proper way. This reversibility results in the low 
energy loss, which is now due to "viscous friction" alone (see Section 4). 

Physical reversibility of an element does not necessarily mean the 
complete reversibility of the logic devices using these elements. Landauer 
(1961) and Keyes and Landauer (1970) have shown in detail that it is a lack 
of knowledge of the state of each element during the computation, which 
results in the energy loss (8) per each elementary logic operation. Let us 
have a look at the physical mechanism of this loss to find a way to avoid 
this dissipation. 

3. REVERSIBLE COMPUTATION WITH PARAMETRIC 
QUANTRONS 

First we give a brief description how one can transfer and process 
information using a set of PQs (Likharev, 1977). Figure 3 shows shift 
register (a) and elementary logical cells (b, c) consisting of PQs with the 
parameters ~. changed by three-phase clock signals (d). Arrows show the 
inductive coupling of PQs which makes the "external force" f acting on a 
PQ, determined by the variable x in several adjacent PQs. For example, in 
the shift register (Figure 3a) each PQ is coupled weakly to two nearest 
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Fig. 3. Shift register (a), irreversible logic cell (b), and reversible logic cell (c) using PQs. 
Rectangles on a vertical "string" denote PQs controlled by the same clock current 1~(t), so 
that their parameters ;~o~ are changed synchronously Functions X ~ ,  X ~2), and X ~3) are shifled in 
time to form a three-phase system (d), so that information is passed from left to right. 
Double-pointed arrows show inductive coupling between the PQ cells, while angled arrows 
show the permanent external biasing ~j. 

neighbors ,  so that  

/t')=k[xli-n+xti+n], k<<l  (9) 

Let a bit  of in fo rmat ion  be s tored tn the left PQ cell at t = 0 .  It means 
that  N 31 is more than uni ty at the moment ,  so the energy barr ier  exists in 
this cell, and  in format ion  is encoded  by the cell state in one of the min ima 
x = • x 0 of  the two potent ia l  wells. This cell provides  its neighbors,  in 
par t icular ,  its right ne ighbor  1, with a weak bias ing force f0 = kxo, result ing 
in small  shift  of the single energy m i n i m u m  of the la t ter  cell, because  its 
energy barr ier  is suppressed  (),<z) < 1), Now we star t  to increase X(2L restor-  
ing the bar r ie r  in the region x~-0 .  In accordance  with the discussion of 
Sect ion 2, cell 1 will be led to a state close to -+x o, with the sign 
co r r e spond ing  to that  of  x in the initial  cell. In o ther  words,  the initial  

i n fo rma t ion  is rewri t ten into the cell I now. 
At  this stage, one can " tu rn  off ' '  the initial  cell 3 by decreas ing X(3) and 

thus e l imina t ing  the energy barr ier .  No te  that  this cell is now biased by its 
r ight ne ighbor  by a weak force f ~f0  = kxo of p rope r  polar i ty ,  so the process  
proceeds  jus t  as shown in Figures  2a -2c .  Af te r  the energy bar r ie r  in the left 
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cell is suppressed (t = ~-, Figure 3d), we have come just to the initial 
situation, but with the information shifted by one space period of the 
structure. Repeating the process in this three-phase manner, we can provide 
further shifts of information. Note that the process is completely reversible, 
i.e., there are no irreversible jumps of the variable x in any cell. 

To perform logical operations, one can use the system of PQ cells 
shown in Figure 3b. Here, a logical cell C I~ is coupled not only with the 
output cell C ~2), but also to two input cells A ~3~ and B 13). Moreover, an 
external "force" is applied to the cell: 

= k[x?l  + s 4x!)' + s , . @ ]  +,o/ , , ,  

Is l ls l lsol l, L- kxo, (1o) 

the signs of s.4, s B, s o being determined by the coupling polarities, fo 
represents a fixed signal, independent of the information content being 
processed. 

The initial states of x!43) and x~ I can be of any polarity, depending on 
the information A and B which have come from the input in the manner 
described above. At the moment t =0,  the barrier in cell C (~) is turned off 
(2, (~) < 1), and its only energy minimum is shifted to the left or to the right 
from the origin, according to the sign of the quantity 

C =  sAA + s o B  + s o, I A I = I B I = I  (11) 

Turning this cell on (restoring its energy barrier) leads the cell to the state, 
corresponding to C (11). In this manner, any logical operation can be 
performed, depending on the signs of the coupling constants s A, s~, s o. For 
example, the cell with s A = s  B = s  0 = l  provides the logical OR, while 
s A = s B -- - s o = 1 provides the logical AND. 

Note, that these logical operations are not reversible. In fact, when cells 
A (31 and B (3~ are being turned off, one of them can be under the "wrong" 
bias provided by the logical cell C(~); so that the process follows the right 
column of Figure 2. This fact is directly connected to the logical irreversibil- 
ity of the circuit (Keyes and Landauer, 1970). In fact, after the input cells 
are turned off, we cannot restore their initial state. The minimum energy 
dissipation W per operation is achieved as k ~ 0 and equal just to W (8). 

Bennett (1973) noticed that one can perform logically reversible com- 
putation by storing all the intermediate calculation results, and thus avoid 
the bound (8). In his arguments, he used a type of Turing machine, very far 
in its structure from the "usual" computers. We will demonstrate the 
possibility of reversible computation with the help of the more realistic 
circuits consisting of PQs. 
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Let us modify our logical system with two more cells A <u and B ~1> 
(Figure 3c), each coupled with one of the input cells, with the coupling 
factor k '>k.  In this circuit, the information will not only be logically 
processed in the logical cell C <~), but also passed to these additional cells, 
when )~c~> is increased. Now, when )~3) is being decreased and thus input 
cells A <3) and B <3) are being turned off, their back bias from the additional 
cells (always of the proper polarity) will overpower the back bias from the 
logical cell C <ll (of maybe wrong polarity). Thus, we avoid irreversible 
jumps in the input cells. Now the information A, B from the additional cells 
must be passed to a PQ-based memory for subsequent storage. Any attempt 
to erase the information would again lead to energy loss W e (8), so after the 
calculation is over all the operations can be inverted to bring the computer 
and its memory to the original initial state with the exception of a memory 
containing the final result (Bennett, 1973). In the PQ-based computer, it can 
be achieved merely by changing the clock pulse ()~')) order from 1 ~ 2 -  3 to 
3 ~ 2 ~ 1 .  

Of course, reversible computation demands a greatly enlarged memory 
volume and is by no means practical nowadays, when typical energy 
consumption per bit is still much larger than keT, even for Josephson- 
effect-based devices (see, for example, Keyes, 1981). As a matter of princi- 
ple, however, nothing in our reversible computation concept is absolutely 
unrealistic; therefore we need not take the entropy bound (8) into account 
in the further discussion. 

4. CLASSICAL LIMITATIONS ON ENERGY DISSIPATION 

The above discussion shows that devices like the parametric quantron 
can be an "ideal" computer element, in the sense of its low energy 
dissipation W. This enables us to discuss the lower bounds for W using this 
simple and realistic device. 

Reviewing all operations of the information transfer and reversible 
processing described in Sections 2 and 3, one can assure oneself that they, in 
fact, consist of sequences of elementary operations of switching a single PQ, 
shown in the left column of Figure 2. Of course, the polarity of the bias 
depends on the processed information and can change from period to 
period, but W is evidently independent of the polarity and we can use, in 
particular, the process shown in Figure 2 for the discussion, 

The only energy dissipation which results from the reversible switching 
of PQ is that due to viscous flow of the system and can be characterized by 
some viscosity factor ~. Let us limit ourselves to the case of relatively slow 
operations, with the period ~- large in comparison with some characteristic 
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relaxation time of the system, in which case the energy dissipation is 
minimum. This condition can be written in different ways for the systems 
with low and high damping: 

I+ = ~o/.~2 > co I 

"r >>1 r I" 

at % > ~ (low damping) 

at %. << ~ (high damping) 
(]2) 

Here % is the system "characteristic" frequency: 

~ . =  k/~ (13) 

where k is the effective elasticity modulus: 

k zd2U/d.'t2 (]4) 

the latter derivative taken at the equilibrium point x, where dU/dx  = O. 
For lightly damped systems, the relaxation time depends not only on k 

and rt but also on the frequency ~o of small oscillations around the 
equilibrium point: 

(]5) 

where m is the effective mass of the system. For the Josephson junctions, the 
characteristic frequency, % is of the order of 2 A / h - 1 0 1 2  s L (A is an 
energy, gap of the superconductor being used), while ,~ is the "p lasma  
frequency" dependent on the effective "m as s " - -no rma l i zed  junction capa- 
citance (see, for example, Likharev and Ulrich, 1978): 

.7 = ( ~ o / 2 r r  ) -C 

Coming back to the dissipated energy W, in the case (12) we can write 

W =  ~'rp dt = 71f r (_r )2 dt 16) 

The energy loss depends on the function 5:(t), and hence on the functions 
Mr) and f i t ) .  In any case, however, a reasonable estimate is given by 

i: ~ Xo /r  so that W ~  ~xo / r  (17) 

where we omit numerical factors of the order of unity; x o is the maximum 
value of x during the operation cycle. 
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In equation (17), rj and r should be considered as given parameters, so 
that decreasing x 0 is the only way to reduce the dissipation. From Figures 1 
and 2 one can readily see, however, that decreasing x 0 leads to lowering the 
energy barrier U o separating two static states (Figure 4), and consequently 
to increasing the probability p of the system spontaneous switching to the 
"wrong"  state. 

If p is kept very small (p  << 1), it can be found as 

fo T p = ri- I dt (18) 

where r L is the lifetime of the "correct" state. For the thermally activated 
transitions "over" the energy barrier (arrow 1 in Figure 4) classical statistics 
yields the well-known result: 

rL l=(~oA/2~r )exp ( - -Uo /keT)  at rL >>'L %. 1 (19)  

If the curvature d2U/dx  2 of the U(x) dependence is equal at the bottom of 
the well (x = .;:) and at the top of the barrier (x = 0 in Figure 4), then 

w at % >> ~0 (low damping) 
~A = (20) 

w~. at % << ~o (high damping) 

Equations (18) and (19) show that r ~ and hence p in fact increase 
exponentially with the lowering of U o, and thus one should maintain U o and 
.~ to be large enough during the whole operation cycle. The exact relation 
between ~ and U o depends on the specific shape of the U(x) function, but 

Uo 

U 

x'o 0 ~', x 

Fig. 4. Two processes leading to spontaneous switching of the state in a bistable element: (1) 
classical thermally activated "jump" over the energy harrier: (2) quantum-mechanical tunneling 
through the barrier. 
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for the realistic "smooth" functions [see equation (5) as an example] a 
reasonable estimate is given as 

Uo ~ k x 2 / 2  (21) 

Combining equations (l 7)-(21), one obtains that the energy dissipation 
W during a cycle must be larger than the "classical limit" 

w~) ln(coATp)- W c kBT( - i  i (22) 

The most essential feature of this limitation is the inverse proportional- 
ity of W c to the cycle period, ~'. This dependence reflects the process 
reversibility: W ~ 0  as ~-~ ~ .  Taking the values typical for the Josephson 
junctions, T ~ 4  K and ~oc-~10 ~2 s - I  and fixing the reasonable values 
p = 10- is, -r = l 0  - 9  S, we get 

W C ~ 1 0  - 2 4  J (23) 

a value well below the thermal fluctuation energy kBT-~ 10 -22 J. Note that 
for "fast" nonlinear elements like Josephson junctions, quite reasonable 
computer speeds like T ~ 10 -9 s well satisfy the condition (12). 

5. QUANTUM-MECHANICAL LIMITATIONS 

The classical limit W c (22) decreases when the temperature T is 
decreased. When T reaches the "quantum" value TQ, 

(hw at ~o c >> w (low damping) 
kBT Q ~ (24) 

hw C at ~oc << ~0 (high damping) 

the contribution of the macroscopic tunneling through the energy barrier 
(arrow 2 in Figure 4) to the probability p of spontaneous switching becomes 
of importance. The theory of this phenomenon for the systems with low 
damping is well understood presently (Likharev, 1981), so we will present 
here the results alone, assuming T << TQ for the sake of simplicity. 

According to the above discussion, the operation speed is supposed to 
be within the following limits: 

~o- I << ~ << ~- << % (25) 

so the system is very close to its equilibrium state at the very bottom of the 
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energy well (x ~:~), where its shape is nearly quadratic: 

U(x)  = k ( x  - 2)2 /2  +const  (26) 

From the quantum-mechanical point of view, the state of the system is very 
close to its basic (zero-point) state, and we can use well-known wave 
functions + 0 ( x -  :~) of a harmonic oscillator for its description, with eigen- 
energy 

E = E o = h~o/2 << U 0 (27) 

The exponential "tail" of this wave function penetrates inside the energy 
barrier and induces some small ,p(x) in the other energy minimum. In the 
case of high energy barrier (27), analysis of this penetration can be con- 
ducted using the quasiclassical (WKB) wave function which coincides with 
~o in a transitional region E << k(x  - x)2/2 << U 0. Simple calculation shows a 
nonvanishing probability of tunneling only if two energy minima are almost 
equal: 

(28) 

Within this region of small well asymmetry, the basic state lifetime is given 
by 

~'t.' = [ ~0/2( ~'e )'/2] e x p ( -  aU o / ho~ ) (29) 

where the factor a changes from 6 to 12 depending on the specific shape of 
the barrier; for example, a = 3 2 / 5  for the symmetrical ( f - - 0 )  barrier (5) at 
not very high values of ?~ (~ ~> 1). 

Coming back to the energy dissipation itself, we note that according to 
equations (25) and (26) the system can be treated as an externally driven 
harmonic oscillator. The quantum statistics of such oscillators is well 
developed (see the monograph by Louisell, 1973, for example), and shows 
that one can again use equation (16) for W, having in mind that the 
low-temperature value of 77 can be, generally speaking, somewhat different 
from the high-temperature value. 

Combining equations (17), (18), and (29), we arrive at the quantum- 
mechanical limitation on the energy dissipation of the PQ-type element with 
low damping: 

W>~WQ, WQ. .~ (h~ /w j ) l n (~ ' rp ) - ' ,  at ~>>~ (30a) 
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The strict quantum statistics for nonlinear highly damped systems is not 
well developed yet, but preliminary estimates lead to the result 

WQ~(h /~) ln (%rp) - '  at w,. << w (30b) 

One sees that the quantum limitation for the highly damped systems is in 
qualitive agreement with the earlier estimates by Bledsoe (1961), Marko 
(1965), and Likharev (1977). The limit (30a) for the systems with low 
damping (say, PQs using tunnel Josephson junctions with their high capaci- 
tance) is, however, far lower than the estimates, because the factor Q = 
~Oc/~O >> 1 can be much larger than the logarithmic factor. 

This result does not contradict the so-called energy-time uncertainty 
condition (see, for example, Landau and Lifshitz, 1958) 

AE•  (31) 

First, as has been shown recently by Vorontsov (1980), one can measure the 
energy of a system with a precision AE better than is given by equation (31) 
during the time period At, if only one uses an optimum procedure. Second, 
what we have calculated in this paper is the energy dissipation W rather than 
the energy measurement precision A E. Let us discuss the relation between 
these two quantities. 

The quantum-mechanical measurement (see, for example, Bohm, 1951) 
consists of at least two stages. At the first stage, the measured system is 
made to interact with some other quantum object (quantum instrument) and 
thus changes the state of this instrument. This first stage can be described 
by the SchrOdinger equation and is reversible. At the second stage, we 
measure the state of quantum instrument by a classical instrument. Accord- 
ing to present understanding (or present belief?), the second stage ("wave- 
packet reduction") cannot be described by the SchrOdinger equation and is 
irreversible. The limitation on AE comes from the second stage of measure- 
ment. 

Reviewing the above discussion of logic operations using PQ-type cells 
(say, simple information transfer to the adjacent cell), one notes the com- 
plete analogy of the operation with the first stage of quantum measurement, 
the adjacent cell acting like a quantum instrument. This process is com- 
pletely reversible, and our main result (30) concerns only this process and 
thus has nothing to do with equation (31). 

The interaction with a classical instrument is really needed at the stage 
of output information extraction from a "quantum" computer. This prob- 
lem needs a special analysis, but we can note that any reasonable computer 
performs much more logical operations [when the result (30) is valid] than 
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those final read-out operations. So, the amount of energy dissipated during 
the latter operation is of relatively minor importance. 

6. CONCLUSION 

In contrast with some previous attempts to find the minimum energy 
dissipated in computation, we have used quite a realistic model of an 
elementary computer cell (a parametric quantron). Both the classical and 
quantum behavior of the device is well understood, which has enabled us to 
be quite confident in our results (22) and (30), giving, respectively, classtcal 
and quantum limitations on the energy dissipation during one logical 
operation. 

Our approach to the problem, of course, leaves open whether it is 
possible to invent some novel device providing lower power consumption. If 
we limit ourselves to the quasistatic devices, where the computation can be 
stopped at any moment, without inducing an error, one can hardly get away 
from the above estimates. In fact, the only role of the parametric quantron 
in our discussion has been to demonstrate how a flexible bistable potential 
well could be physically realized. (Of course, some numerical factors can 
appear in the estimates if peculiar well shapes are taken into account.) 

One can, however, argue that the above-mentioned condition of quasi- 
statics ~s by no means compulsory, and that the information can be 
processed by some "dynamical" devices, where the cycle period can be 
shorter than the relaxation time. This problem is left for further analysis. 
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